Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions.

نویسندگان

  • Nilkantha Sen
  • Bindu D Paul
  • Moataz M Gadalla
  • Asif K Mustafa
  • Tanusree Sen
  • Risheng Xu
  • Seyun Kim
  • Solomon H Snyder
چکیده

Nuclear factor κB (NF-κB) is an antiapoptotic transcription factor. We show that the antiapoptotic actions of NF-κB are mediated by hydrogen sulfide (H(2)S) synthesized by cystathionine gamma-lyase (CSE). TNF-α treatment triples H(2)S generation by stimulating binding of SP1 to the CSE promoter. H(2)S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE-deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H(2)S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the coactivator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early after TNF-α treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. In CSE mutant mice, antiapoptotic influences of NF-κB are markedly diminished. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its antiapoptotic transcriptional activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfhydration mediates neuroprotective actions of parkin

Increases in S-nitrosylation and inactivation of the neuroprotective ubiquitin E3 ligase, parkin, in the brains of patients with Parkinson's disease are thought to be pathogenic and suggest a possible mechanism linking parkin to sporadic Parkinson's disease. Here we demonstrate that physiologic modification of parkin by hydrogen sulfide, termed sulfhydration, enhances its catalytic activity. Su...

متن کامل

Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide

The study was designed to examine if the vasorelaxant effect of hydrogen sulfide was mediated by sulfhydration-associated phosphodiesterase (PDE) 5A dimerization. The thoracic aorta of rat was separated and the vasorelaxant effects were examined with in vitro vascular perfusion experiments. The dimerization and sulfhydration of PDE 5A and soluble guanylatecyclase (sGC) were measured. PDE 5A and...

متن کامل

Hydrogen sulfide mediates athero-protection against oxidative stress via S-sulfhydration

S-sulfhydration is a signalling pathway of hydrogen sulfide (H2S), which is suggested as an anti-atherogenic molecule that may protect against atherosclerosis. The identification of S-sulfhydrated proteins by proteomic approach could be a major step towards understanding the mechanisms of H2S in response to atherosclerosis. The present study studied targeted S-sulfhydrated proteins using the mo...

متن کامل

Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury

PURPOSE Retinal ischemia/reperfusion (I/R) injury plays an important role in the pathophysiology of various ocular diseases. Retinal ganglion cells (RGCs) are particularly vulnerable to ischemia. Hydrogen sulfide (H(2)S) was recently shown to be neuroprotective in the brain and retina due to its antiapoptotic effects. Rapid preconditioning of retinal neurons by inhaled H(2)S before I/R injury m...

متن کامل

Inhibition of Hydrogen Sulfide Production by Gene Silencing Attenuates Inflammatory Activity by Downregulation of NF-κB and MAP Kinase Activity in LPS-Activated RAW 264.7 Cells

Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We foun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2012